CS 8803 Machine Learning Applications for Robotics

Credits	3 Lectures hours 0 Lab hours	Semester Credit Hours:	3
Faculty	Prof. Cédric Pradalier		
Bibliography	Bishop, Christopher M. <i>Pattern recognition and machine learning</i>. Vol. 4, no. 4. New York: Springer, 2006.Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. <i>Probabilistic robotics</i>. Vol. 1. Cambridge, MA: MIT press, 2005.		
Assessment	2 written exams: 2 x 10%, Students start with 80% of project credit. Penalty for not returning a homework -30%, for not returning a project: -50%.		
Course Objectives:	This class will present computational tools, mostly from the machine learning toolbox, useful for the development of robotic applications. The objective is to get a hands-on experience with these tools through some theoretic background and a lot of project work.		
Pre-requisites:	This is a CS class, hence it assumes a familiarity with programming an computers, as well as a reasonable background in maths, in particula linear algebra and geometry. Support will always be available for technical issues.		
	Linear Algebra: being at ease with manipulating matrices		
	programming in C++ a	ojects will require a sign and Python. The students ar or have the motivation to learn	e expected to either
		rojects will be run under Lin v this OS or have the motivat	
Weekly organization:	(80-120min) and then mini-project. The class over a 3 week timespan	work, the class will start with head to the computer room will include 3 larger projects I. In this case, the full duration ork in the computer room with ite board.	to start on the week s, each of them done n of the class will be
Infrastructure:	simulation environme simulation will run on (www.ros.org) to com	ill be conducted in groups nt installed in GTL's con- top of V-Rep (<u>www.v-rep.eu</u> municate with the simulate c on real robots can probably early in the semester.	mputer room. The <u>1</u>) and will use ROS d robots. For those

Class Nr	Week	Торіс	Homework and Projects
	1	34 Introduction	Introduction to the Development Environment
	2	35 Linear Regression	Plane fitting using RGB-D Sensors
	3	36 System Identification and Control	Robotics System Identification
	4	37 Model Finding: RANSAC/Hough	Object finding using RGB-D sensors
	5	38 Mid-Term 1	Introduction to Project 1
	6	39 Project 1 + Bayesian Filtering	Project 1
	7	40 Project 1	
	8	Bayesian Filtering for Localisation and 41 Mapping: Kalman and Particle Filter	Robot Localisation using Kalman Filter
	9	42 Mid-term 2	Robot Localisation using Particle Filter
		43 RECESS	
1	0	44 Introduction to Convolutional Neural Networks (CNN)	Introduction to Project 2
1	1	45 CNN for Control / Regression	Project 2
1	2	46 Project 2	
1	.3	47 Unsupervised Learning: From Clustering to EM	Introduction to Project 3
1	4	48 Project 3	Project 3
1	5	49 Project 3	
		50 Finals	

Description and Class Schedule:

Project description:

Project 1: Probabilistic Mapping. Considering a robot with known perfect localisation and a RGB-D sensor (Kinect), use Bayesian filtering (BF) to estimate a digital elevation map (BF for a Gaussian continuous variable) and traversability (BF for a binary variable) using the tools presented in weeks 34 to 37.

Project 2: Using Convolutional Neural Network. The goal of this project will be to use offthe-shelf CNN libraries (Caffe) to train and use a CNN. There will be two sub-components of the project. In the first stage, a CNN will be trained to perform a classification task to detect the drivable area of an environment from camera. In a second stage, a CNN will be trained to learn a navigation behaviour by imitation. In both case, the problem will be framed as a classification task.

Project 3: Integration and Treasure Hunt. The objectives of this final project is to integrate some of the components learnt until here into a complete application design to search an environment for hidden objects (this could also be seen as a demining application). The simulated robot will be a large truck with a 5 DoF robotic arm. Autonomous Navigation and Object Detection will have to be implemented by the students.